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The structure of the Stewartson layers in a gas centrifuge. 
Part 1. Insulated end plates 

By TAKUYA MATSUDAt AND KIYOSHI HASHIMOTO 
Department of Aeronautical Engineering, Kyoto University, Kyoto, Japan 

(Received 4 January 1977) 

The structure of the Stewartson Ef-layer (E being the Ekman number) in a compres- 
siblegas contained in a rapidly rotating cylinder is investigatedfor the case in which the 
end plates of the cylinder are thermally insulated. It was found by Matsuda & 
Hashimoto (1976) that the Ea-layer could not have a relevant structure in the ordinary 
configuration in which the Ef-layer meets the end plates through its Ekman extension 
of thickness Et. In  this paper the E* x E* square region, in addition to the Ekman 
extension, is considered. The heat generation due to the radial fluid motions in the 
Ekman extension causes the temperature fields in the Ea x Ea square region through 
which heat is conducted to the side wall of the cylinder. Numerical calculations were 
made to obtain the temperature fields, which are shown in several figures. 

1. Introduction 
Compressible fluid motions in a rapidly rotating cylinder have been investigated as a 

model of gas centrifuges used to enrich uranium in several papers (Sakurai & Matsuda 
1974; Nakayama & Usui 1975; Matsuda, Sakurai & Takeda 1975; Matsuda, Hashi- 
mot0 & Takeda 1976). It was found that the fluid motions strongly depend on the 
thermal boundary conditions a t  the cylinder walls, especially those on the end plates 
(Matsuda & Hashimoto 1976). The effect of the compressibility of the fluid is to pro- 
duce heat generation or absorption accompanied by radial fluid motion in the radial 
density stratification. This is dominant in the Ekman layers on the end plates and the 
Ekman extensions in which the Ekman layers meet the Stewartson layers on the side 
wall, because the radial motions have greater magnitudes in these regions. When the 
end plates are thermally conducting, the heat due to the radial motion in the Eknian 
layer and the Ekman extensions can be removed via the end plates. On the other hand, 
when the end plates are thermally insulated this is not possible. The present authors 
(1976) have treated the latter case and shown how the heat produced in the Ekman 
layer is conducted to the thermally conducting side wall through the inner region and 
how the axial flow, whose profile plays an essential role in the estimation of the 
efficiency of uranium enrichment, is affected. However, we failed to give a consistent 
formulation of the Stewartson Ea-layer and restricted the analysis to the case in which 
only the Stewartson E*-layer exists on the side wall, where E is the Ekman number 
and we assumed E < 1.  The reason for this failure is that the Ef-layer has a simple 
structure, so that the heat produced in the Ekman extensions of the Ea-layer cannot be 
conducted to the side wall through the Et-layer. 
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FIGWILE 1. The configuration of the system and the structure of the Stewartson layers. 

In  this paper we study the structure of the Ei-layer when the end plates are ther- 
mally insulated and the side wall is kept at a constant temperature. Let us consider the 
simplest case, in which the existence of the El-layer is a necessary condition. The top 
and bottom end plates of the cylinder of radius L and height 2H rotate with the same 
angular velocity a, while the side wall rotates with angular velocity Q + A Q  (see 
figure 1). Before proceeding with the mathematical formulation of the problem, let us 
give a brief survey of the results. The Ei-layer in incompressible Boussinesq fluids 
meets directly its Ekman extensions on the end plates and the temperature and the 
azimuthal and radial components of the velocity do not depend on the axial position 
z in the Ef-layer. When the fluid is a compressible gas, the Ea-layer meets its Ekman 
extensions through square regions of size El x El. In these square regions the above 
physical quantities depend on z as well as the radial position r .  The structure of the 
Stewartson layers on the side wall is shown schematically in figure 1. Region I1 is the 
El-layer and region V is the Ef-layer. Regions IV and VI are the Ekman extensions of 
the El-layer and the E*-layer, respectively. Region I11 is the square region in question. 
In  this paper we do not treat regions V and VI, in which the higher-order components 
of the solutions are matched to satisfy the side-wall boundary condition. The details 
of the E)-layer and its Ekman extension were investigated by Sakurai & Matsuda 
(1974). 

When the fluid is incompressible, we can obtain consistent soh tions without region 
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111. In  the inner region I the fluid rotates rigidly with angular velocity Q. The differ- 
ence in azimuthal velocity between region I and the side wall is smoothed through the 
Ei-layer, region 11. The Ekman extensions IV appear on the end plates to match the 
difference in azimuthal velocity between the El-layer and the end plates while the 
Ekman-layer suction induces the secondary meridional flow in region 11. This meri- 
dional flow forms circulations from region I1 to region IV through regions V and VI 
and then back to region I1 when AL2 > 0 and vice versa when AQ < 0 as was shown by 
Stewartson (1957). 

Let us now consider the case of compressible fluids. The basic state is rigid-body 
rotation of the fluid with angular velocity Q and constant temperature. The radial 
density stratification causes heat generation or absorption accompanied by radial 
fluid motions. In  the present case, the radial motions are dominant in regions IV and 
VI. Because the end plates are thermally insulated, the resultant heat is removed 
(supplied) to (from) the side wall through region 111. Then the temperature field in 
region I11 depends on z and r .  At the same time a thermal wind appears in this region 
in the balance between the Coriolis force and the centrifugal buoyancy force. 

In  5 2 the basic equations are given, in § 3 the results for regions 11, I11 and IV  are 
obtained and in § 4 they are summarized and numerical calculations made to obtain the 
solutions. 

2. Basic equations 
We introduce a cylindrical co-ordinate system ( r ,  8, z )  which rotates with angular 

velocity $2. The origin of the co-ordinates is the point on the rotation axis midway 
between the end plates. Consider rigid-body rotation of the fluid with angular velocity 
$2 and constant temperature To as a basic state. The non-dimensional linearized basic 
equations governing the deviations in the axisymmetric fluid motion from rigid 
rotation are 

div q + Go ru = 0, (2.1) 

E 
2% = - 9 v ,  

€ R  

- 4hru = (E/€R) AT, (2.5) 

i a  aw a 2  i a a 2  1 
where divq=--(ru)+-,  A = - + - - + -  Y = A - -  

r ar az ar2 r ar az2' r2' 

q(u,v,w) is the velocity vector, M the mean molecular weight of the fluid, R the 
universal gas constant, v the kinematic viscosity measured at the side wall and y the 

15-2 
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ratio of specific heats. The non-dimensional parameter Go is the square of the rotational 
Mach number, E is the Ekman number, Pr is the Prandtl number and h is a parameter 
measuring the heat generation or absorption due to the radial fluid motion. In  the 
above expressions the velocity, teinperature and position have been non-dimen- 
sionalized by Ll A n [ ,  Go TolARI /Q and L, respectively. In this paper we treat a rapidly 
rotating fluid, so that we can neglect the effect of gravity, and we assume that E < 1 
and that Go and Pr are of order unity. We also assume that h is O(Ef)  since in a uranium 
gas centrifuge the fluid in question is UF,, for which y is 1.067, which is close to unity. 
The boundary conditions for the present problem are 

u=w=O, v = l ,  T = O  on r = l  (2.8) 

and u=v=w=O, a T / a z = O  on z = + A ,  (2.9) 

where A = H / L  and An > 0. 
Let us suppose that the effect of the side wall is confined to the Stewartson layers in 

the present simple case and that the fluid in the inner region I rotates rigidly with a 
constant temperature Ti. Denoting the solutions in region I by a suffix i, we have 

ui = vi = wi = 0, T = constant = Ti (2.10) 

and dpi/dr = - G o r q .  (2.11) 

The constant T, is determined after the analysis of the Stewartson layers on the side 
wall. 

3. The analysis of regions 11, I11 and IV 
In the present problem, the prescribed values of v and T at  the side wall are constant 

and do not depend on z. This corresponds to the ‘symmetric problem’ in Hunter’s 
(1967) paper, in which the Stewartson layers in an incompressible fluid were investi- 
gated and the inner-region solutions can be matched to their side-wall boundary values 
without the E)-layer. We can assume without ambiguity that u, v and Tare symnietric 
functions of z while w is an antisymmetric function of z because the system is symmetric 
with respect to z. In  the following, we restrict our attention to the region z > 0. 

When the side-wall boundary condition on T is given by a function of z, the constant 
part of the Fourier series into which the function is expanded in ( - A ,  A )  is damped 
radially in the E)-layer. Of the remainder, some parts are damped radially in the 
E*-layer while others give the boundary condition for the inner-region solution. In  this 
case, therefore, the fluid cannot be in rigid-body rotation with a constant temperature, 
in the inner region (see Matsuda & Hashimoto 1976). 

Region I1 : the Ea-layer 

The proper scaling for the variables in the Ef-layer is 
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where tildes refer to the Ef-layer and f is a stretched radial co-ordinate. Substitution of 
(3.1) into (2.1)-(2.5) gives us 

(3.2) 

-2C+hP-(l+h)aP/af  = 0, (3.3) 

26 = a 2 C p p ,  (3.4) 

ap/az = 0, (3.5) 

-4ii = azP/afz. (3.6) 

- a.ii/af + a q a z  = 0, 

Equations (3.2)-(3.6) can be easily integrated and the variables .ii,C,.iT, and 
expressed in terms of - d@/dg: 

.ii=*f", L*f, a+p, P=- - f ,  (3.7) 

wheref([) = -@' and the dashes denote differentiation with respect to f .  The function 
f must tend to zero as 6 -+ co because this represents the Ef-layer component of the 
solution. Now we can determine the values of Ti andf(0). Since T = Ti+hP = 0 and 
v = C = 1 a t  f; = 0, we obtain 

(3.8) Ti = 2h, f ( O )  = 2. 

Region 111 : the E )  x Ef square region 

The variables are scaled according to 

u = E&, 
(3.9) 

v = 5, w = EkG, p = Gopi +Go( 1 + h) Eap, 
T = T ~ + T ,  = ( A - ~ ) E - ~ ,  

where bars refer to the E) x Ea square region and xis a stretched axial co-ordinate. We 
use the same stretched radial co-ordinate f as is in the last section. The governing 

(3.10) equations for these variables are aiqax = 0, 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

Introducing a function $ ( f ,  x) defined by 

(1  +h)$  = 2h5+F, (3.15) 

and using (3.12) and (3.14)) we see that 

a z + / a p  + a2$ /ax2  = 0. (3.16) 

Then the variables Ti, 5 and F can be expressed in terms of - ji' and $ as follows: 

Ti = p, ;ij = *($+j), T = $-hJ (3.17) 

where f = - p'. Matching these solutions to the solutions in the Ei-layer, at  x = 00, 

.jjj = i A F ,  f=f. (3.18) leads us to the relations 
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The function # must tend to zero as E ,  x+m. As is easily seen from (3.17) and (3.18), 
9 and ;il represent the Ei-layer components of the solutions in this square region, while 
V and T are composed of the Ei-layer components and the square-region component #. 
Since the solutions w and T in the E*-layer already satisfy the side-wall boundary 

# = 0  on E = O .  (3.19) condition, we must have 

Note that the function # represents the temperature field due to the heat generation 
or absorption in the Ekman extension of the Ei-layer and the resultant thermal wind 
and is coupled with the solutions in the Ekman extension by the boundary condition 
at  x = 0. 

Region I V :  the Ekman extension 

Let us consider a superposition of the components of the solution in the Ekman 
extension on the components in the Ei x Ei  square region, which are scaled according 

to u = a, w = V+8, w = Ei(%+8) ,  p = G o p i + G o ( l + h ) E ~ ( ~ + @ ) ,  ) (3.20) T = c + F + h P ,  7 = ( A - z ) E - # ,  

where carets refer to the Ekman extension and y is a stretched axial co-ordinate. The 

aa/ac+as/aq = 0, (3.21) 
governing equations are 

(3.22) 

2a = a2o/ar2, (3.23) 

a$/ar = 0, - 4 a  = a2P/av2. (3.24), (3.25) 

We must choose the solutions of the above equations which tend to zero as y -+ co. From 
(3.23) and (3.25) we have 

2 8 + k  0. (3.26) 

Eliminating a, 8 and j3 from (3.22), (3.23) and (3.25), we obtain an equation for p :  

- 28 + h p  - (1 + h) afj/aC = a2a/aq2, 

a 4 P l a ~ 4  + 4a49 = 0,  = ( i  + h)). (3.27) 

Equation (3.27) is easily integrated subject to the boundary condition 

a( = - $a2T/8y2) = 0 at y = 0 

P = ~ ( 6 )  e-aq cos ay. and pis  given by 

It is straightforward to obtain a, 8 and 8 by using (3.21), (3.25) and (3.26): 

(3.28) 

.Ti = - &r2C(<) e-av sin aq, 

8 = - 1 C  ( E )  e-‘q cos cry, 

8 = - faC’(E) e-‘v (cos ay - sin ay). 

(3.29) 

(3.30) 

(3.31) 

The boundary conditions at the top end plate, 

w = V+8 = 0, w = E ) ( 9 + 8 )  = 0 (3.32), (3.33) 
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can be expressed in terms of q5, f and C as 

and 

(3.35), (3.36) 
on x =  0, I (3.37) 

q5+f-c= 0, Aj+-o-C'= 0 

aq5px - o-po c = o 

where Po = hE-f and use has been made off =f. On eliminating C from (3.35)-(3.37), 
we obtain an ordinary differential equation for f(c) and the boundary condition for 

P-,f= ,q5(W (3.38) 
g o -  

q5(5,x) a t  x = o: 

and aq51ax - gpo q5 = o-pof on x = 0, (3.39) 

respectively. 
Before closing this section, we must mention that we cannot have a relevant form- 

ulation of the Ef-layer without the Ea x Ef square region. If there are no square-region 
components in the solution, C(5) must vanish from (3.28) to satisfy the thermal bound- 
ary condition &/all = 0 a t  the end plates because the Ef-layer component of the 
temperature does not depend on z. This means that the Ekman extension does not 
exist. Thus the Ef-layer components of the solution must satisfy the boundary con- 
ditions on the end plates themselves, which is impossible as may be seen from (3.7). 
This is the discrepancy which the present authors met in their previous paper (1976). 

4. Summary and numerical results 
Let us summarize the results obtained in the last section. The equations for #(<, x) 

andf(5) are azq5lap + a2q5/ap = 0, (4.1) 

The boundary conditions are 

and @,f+o as g+co; $ + o  as %+a. (4.5) 

When h is of order Ea, which has been assumed implicitly in the scaling in the last 
section, Po is of order unity and we introduce Fourier transforms to obtain the solutions 
of (4.1) and (4.2) subject to (4.3)-(4.5). We denote the Fourier sine transforms of 
q5 andf, with respect to (, by 0 and F :  



440 17. Matsuda and K .  Hashimoto 

Then, from the Fourier sine transforms of (4.1), we obtain 

The relevant solution of (4.8) is 

The Fourier sine transforms of (4.2) and (4.3) are respectively 

@ = D(h)e-*x. 

F = hf(0)--@(h,O) (T 

A 

(4.9) 

(4.10) 

and [a@/axlx=0 - (TPO @(A, 0) = (TPOF. (4.11) 

Substitution of (4.9) into (4.10) and (4.11) and use off(0) = 2 gives us 

= 2(A + @,)/(A2 + (Tp0 h + a/A) ,  

D = -2(Tpo/(h2+(T/30h+(T/A). 

By inversion of (4.9) and (4.12), # and f can be expressed as 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

The integrals in (4.14) and (4.15) were calculated numerically. Figures 2 (a ) ,  ( b )  and ( c )  
show the temperature field in the E* x E* square region and the Ekman extension in 
the upper corner of the cylinder for the three cases ( a )  h = 0.05, ( b )  h = 0.2 and ( c )  
h = 0.5 with Ef = 0.2 and A = 1. In  these figures the upper end plate corresponds to 
x = 0 and the side wall to f = 0. The region near x = 0 is the Ekman extension. As is 
discussed in 3 1, there is radially inward ( + 6 direction) motion of the fluids, so that a 
fluid element cools in the radial pressure stratification due to the rigid-body rotation. 
Because the end plates are thermally insulated, the heat must be supplied from the 
side wall to maintain the fluid motion. The strong heat flux from the side wall to the 
Ekman extension can be observed in figures 2 (a ) ,  (6) and ( c ) .  

When h is less than O(Ef) [in Matsuda & Hashimoto’s (1 976) paper h was estimated 
to be O(Ea)], we see from (4.3) that a#/ax = 0 at x = 0. In  that case the relevant soh- 
tion of (4.1) is apparently # = 0. Then we obtain from (4.2) 

f = 2 exp { - (a/A)+ 61. (4.16) 

This is the ordinary Ef-layer solution. A non-zero component of # appears at  a reduced 
order and this couples the solution with the Ekman-extension solution, as has already 
been shown in (4.16) and (3.34). 

When his greater than O(Ef), (4.3) leads to # +f” = 0 at x = 0. Then, from (3.35), we 
observe that C(<) = 0, which means that the Ekman extensions vanish. This is because 
the heat absorption accompanied by radial fluid motion in the Ekman extensions is 
strong in this case while the heat flux from the side wall to the Ekman extension via the 
,@ x Ea square region is not sufficiently Iarge to maintain the fluid motion in the 
Ekman extension under the scaling in § 3, so that the Ekman extension itself must 
vanish. In  addition, from (4.2) we see bhat f” = 0 and we cannot have the relevant 
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FIGURE 2. Isotherms in regions 111 and IV when E l  = 0.2 and A = 1. (a) h = 0.05. 

(b)  h = 0-2. (G)  h = 0.5. 



442 T. Matsuda and K .  Hashimoto 

solution forfwhich satisfies the conditionsf(0) = 2 andf(co) = 0. In  the case h B Ei 
we fail to give an appropriate formulation of the Ea-layer even if we consider the 
Ea x Ea square region. 

Finally, we must mention that the meridional secondary flow in the Ea-layer does 
not vanish at  6 = 0. As was discussed in $ 1 ,  this meridional secondary flow is matched 
to its side-wall boundary condition via the Ei-layer. An analysis of the Ei-layer was 
given by Sakurai & Matsuda (1974) for a rapidly rotating compressible fluid and we do 
not treat it  in this paper. 

The authors wish to express their thanks to Professor Takeo Sakurai €or his critical 
discussion of the manuscript. The numerical calculations were made by the FACOM 
230-75 at the data processing centre of Kyoto University. 

R E F E R E N C E S  

HUNTER, C. 1967 The axisymmetric flow in a rotating annulus due to a horizontally applied 

MATSUDA, T. & HASHIMOTO, K. 1976 Thermally, mechanically or externally driven flows in a 

MATSUDA, T., HASHIMOTO, K. & TAKEDA, H. 1976 Thermally driven flow in a gas centrifuge 

MATSUDA, T., SAKURAI, T. & TAKEDA, H. 1975 Source-sink flow in a gas centrifuge. J. Fluid 

NAKAYAMA, IN. & USUI, S. 1974 Flow in rotating cylinder of gas centrifuge. J .  Nucl. Sci. Tech. 

SAKURAI, T. & MATSUDA, T. 1974 Gasdynamics of a centrifugal machine. J. Fluid Mech. 62, 

STEWARTSON, K. 1957 On almost rigid rotations. J. Fluid Mech. 3,  17-26. 

temperature gradient. J. Fiuid Mech. 27, 753-778. 

gas centrifuge with insulated horizontal end plates. J .  Fluid Mech. 78, 337-354. 

with an insulated side wall. J. Fluid Meeh. 73, 389-399. 

Mech. 67, 197-208. 

11,242-262. 

727-736. 


